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Abstract
We report on the ab-plane reflectance of the high temperature superconductor
Bi2Sr2CaCu2O8+δ (Bi-2212). Measurements on samples spanning the doping
range from underdoped with Tc = 67 K (UD), to optimally doped with
Tc = 96 K (OPT), to overdoped with Tc = 60 K (OD) were made from
room temperature down to the superconducting state regime. The measured
reflectance data were analysed to extract the optical conductivity and the
real and imaginary parts of the free carrier optical self-energy. We get an
estimate of the dc resistivity from the low frequency extrapolation of the optical
conductivity and the superfluid density from the imaginary part of the optical
conductivity. The conductivity sum rule can be related to the changes of the
kinetic energy of the system. When this system becomes a superconductor,
the kinetic energy decreases in the underdoped samples and increases in the
overdoped ones. The optical self-energy, obtained from the extended Drude
model, is dominated by two channels of interaction: a sharp mode and a broad
background. The amplitude of the mode is strongly doping and temperature
dependent whereas the background decreases weakly with doping and is nearly
temperature independent.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of high temperature superconductivity in the copper oxides [1] the
dynamical properties of the charge carriers in these materials have been investigated with a
variety of spectroscopic techniques. Within a certain class of theories these properties provide
a direct fingerprint of the mechanism of superconductivity. For example, if analogously
to the BCS superconductor case, superconductivity is driven by the exchange of bosons,
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then a study of the self-energy spectrum of the superconducting current carriers would help
us in identifying the relevant bosons. Traditionally this has been done with tunnelling
spectroscopy where numerical inversion techniques using Migdal–Eliashberg theory [2]
revealed spectroscopic fingerprints in the self-energy that could be compared with the phonon
densities of states determined by inelastic neutron scattering and thereby unambiguously
identified as phonons [3]. The self-energy spectra of the high temperature superconductors
have also been investigated with increasing success with advanced spectroscopic techniques [4]
including angle resolved photoemission (ARPES), tunnelling, optics and magnetic neutron
scattering methods, but so far at least no consensus has been achieved in the interpretation
of these spectra.

Contrasting with the traditional BCS mechanism of boson exchange there are alternative,
exotic models of the mechanism of high temperature superconductivity involving the formation
of new states at high temperature which would then Bose condense to form a superconductor
as the temperature is lowered. There have also been suggestions that combine the two pictures
where at low doping levels, close to the antiferromagnetic part of the phase diagram, an
exotic mechanism operates but with increasing hole concentration a more conventional boson
exchange takes over. To throw some light on these issues we have undertaken a study of
the spectrum of excitations responsible for the self-energy of the carriers as a function of
doping in the Bi-2212 system using the optical conductivity as our experimental probe. The
Bi-2212 system has several advantages for such an investigation. First the system can be
doped from the moderately underdoped region with Tc = 60 K through the optimally doped
well into the overdoped region with Tc = 60 K. Furthermore, because the crystals of this
material can be vacuum cleaved, they have also been studied extensively with ARPES [5] and
tunnelling [6].

The extended Drude model that we use to find the real and imaginary parts of the scattering
rate and the self-energy assumes that there is only one channel of conductivity and that any
deviation from the Drude form is due to inelastic interactions. The validity of this assumption
can be tested to some extent by comparing the scattering rate obtained from optics with the
results from ARPES in the nodal direction. When such comparisons are made the resulting
self-energy spectra generally agree to an accuracy of about 15% [7, 8]. One cannot expect any
better agreement from the two methods since they measure different things: ARPES gives us
the quasiparticle lifetimes and self-energies for any given k vector whereas the optical self-
energy represents an average over the Fermi surface of contributions to the current excited by
the external field with each point characterized by a velocity component parallel to the field and
a lifetime of this particular quasiparticle. It therefore comes as a surprise that the two methods
give very similar results not only for the absolute values of these quantities but also their
frequency and temperature dependences, in particular if the ARPES results for quasiparticles
near the nodal point are compared with the optical conductivity. Away from the nodes there are
large discrepancies: at low temperatures ARPES quasiparticles do not show the narrowing that
the optical conductivity shows and there appears to be an inelastic scattering background that
is not seen in the optical conductivity.

Many optical studies have been done on the cuprate systems, especially La2−x SrxCuO4

(LSCO) and YBa2Cu3O6+x (Y123) for light polarized along the ab-plane as well as the less
conducting c-axis direction [9]. Much early optical work was done on the important Bi-
2212 material [10–13]. Quijada et al [12] give a complete set of references to the earliest
work. However recent advances in crystal growth with image furnaces have yielded better
quality crystals, suggesting a need for new studies of this material. Here we report on the
optical properties of the ab-plane of Bi-2212 over a broad doping range from underdoped to
overdoped at various temperatures above and below Tc. We obtain various optical quantities
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from the measured reflectance and discuss some important doping dependent issues. In
particular, we focus on the doping dependent superfluid density and the doping dependence
of the contributions of various excitations to the optical self-energy.

The superfluid density is a fundamentally important quantity in superconductivity because
it is directly related to the ability of the superconducting wavefunction to resist perturbations
to its phase. The superfluid density can be obtained from the optical spectrum in two ways: by
analysing the imaginary part of the conductivity as a function of frequency, or by comparing
the spectral weight loss in the low frequency region as the superconducting condensate is
formed in accord with the Ferrell–Glover–Tinkham (FGT) sum rule [14]. Any discrepancy
in the superfluid density obtained by the two methods can be related to the kinetic energy
difference between normal and superconducting states. This difference can in turn be related to
proposed models of the superconducting mechanism driven by kinetic energy [15–22]. Recent
interest has focused on the doping dependence of the superfluid density and the kinetic energy
difference [16, 19].

The suggestion that spin fluctuations might provide the pairing bosons was made early
by the theoretical community [23, 24]. Adding to the interest in magnetic excitations was
the absence of an isotope effect in optimally doped samples and the discovery of the sharp
magnetic resonance mode at 41 meV in Y123 in the magnetic susceptibility spectrum by
inelastic neutron scattering [25–32]. A sharp excitation at this energy can also be seen using
other experimental techniques such as optical spectroscopy [8, 33–37], ARPES [38–43], and
tunnelling methods [44, 45]. This excitation has the interesting property that its energy h̄�

is proportional to the superconducting transition temperature according to h̄� ≈ 5 kBT at
all doping levels [31] and in all the cuprate families where large single crystals are available.
The only exception are the reduced Tc systems such as LSCO where, while there is a peak
in the magnetic susceptibility, a sharp resonance does not develop at low temperature. In the
overdoped samples the magnetic resonance appears only below Tc but in underdoped samples
it can be seen well above Tc [29, 46]. However even in these systems the resonance grows
rapidly in strength at the superconducting transition. This temperature dependence of the
mode can also be seen in ARPES spectra in the nodal direction [42, 47]. In view of all these
connections to superconductivity it is not surprising that the role of magnetic resonance mode
in superconductivity has been discussed widely [29, 48–50].

One possible connection of the magnetic resonance to superconductivity would be through
its contribution to the optical and quasiparticle self-energy, where it would have a role similar
to the role of phonons in BCS superconductivity [8, 35, 36, 39, 42, 51–53]. The problems with
this scenario have been pointed out by several authors. In overdoped Y123 the resonance
is not present in the normal state and cannot initiate the transition at Tc. In the highly
overdoped state the signature of the resonance vanishes from the optical conductivity at a
doping level where Tc is around 60 K [8, 34, 54] in both Bi-2212 and Tl2Ba2CuO6+δ (Tl-
2201). A general weakening of the contribution of the magnetic resonance to the carrier
self-energy with doping has also been seen in ARPES and tunnelling [42, 45, 47]. It was
suggested by Hwang et al [8] that the coupling of the resonance disappears above a critical
doping level of p = 0.24. Other experiments support the idea that there is a significant change
in the properties of the cuprates at this doping level. Shibauchi et al [55] observed that the
pseudogap temperature T ∗ in c-axis transport merged to Tc in Bi-2212 system near the critical
doping, 0.24. Ozyuzer et al [56] have observed that there was no indication of a pseudogap
near at Fermi level in their tunnelling conductance spectrum of a very overdoped Bi-2212
with Tc = 56 K. Some ARPES studies showed that near the critical doping the topology of
the Fermi surface transformed from hole-like to electron-like in Pb-doped Bi-2201 [57, 58],
LSCO [59] and Bi-2212 [60]. Another ARPES study found that a crossover from two-to
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three-dimensional electronic structure occurred near the critical doping with Tc = 22 K in
(Bi, Pb)2(Sr, La)2CuO6+δ system [61], which has T max

c = 35 K.
In addition to the sharp mode there is a continuous bosonic background spectrum that is

responsible for the strong linearly rising scattering rate that extends to very high frequencies.
It has been discussed in the theoretical literature in the context of models such as the marginal
Fermi liquid (MFL) [62] or the interaction of the charge carriers with a continuous spectrum of
spin fluctuations with the Millis–Monien–Pines (MMP) spectrum [24]. This broad background
exists at all temperatures and doping levels and in all cuprate systems including LSCO
system [63], where there is no clear evidence for the presence of the magnetic resonance mode.
This ubiquitous feature in the cuprates may be also be responsible for the broad kink feature
in ARPES spectra near the nodal region [64]. Other strongly correlated electron systems have
similar broad backgrounds in their bosonic spectra or the real part of the optical self-energy—
for example, the sodium cobaltate system [65]. Interestingly, the sharp mode and the broad
background were captured by optical spectroscopy in the early days for the high temperature
superconductors [66].

The rest of the paper is as follows. In section 2 we describe our experimental technique
including sample preparation and provide our measured reflectance spectra. In section 3 we
describe how we extract the optical conductivity from the measured reflectance and discuss
some recent issues on the optical conductivity. In section 4 we extract the superfluid density
using two different methods and the kinetic energy change going from the normal to the
superconducting state. In section 5 we introduce the optical self-energy using the extended
Drude formalism and describe the doping and temperature dependent properties of the self-
energy. Finally, in section 6 we relate our experiments to several important recent issues and
provide an overall summary of our work.

2. Sample preparation and reflectance

The Bi-2212 single crystals used in the study were grown in an optical image furnace with
the travelling solvent floating-zone technique. To get the appropriately doped samples from
as-grown crystals we annealed under various oxygen annealing conditions [67]; this yielded
good samples of the underdoped (UD), optimally doped (OPT), and overdoped (OD) phases.
Unwanted c-axis longitudinal phonons can be admixed in ab-plane optical data of other
cuprates such as LSCO and Y123 [68, 69]. We see no evidence of these in our samples. We
were able to obtain shiny optical quality ab-plane surfaces Bi-2212 by cleaving the sample.

A commercial Fourier transform spectrometer, Bruker IFS 66v/S, was used to obtain the
reflectance data over a wide frequency range from 50 to 40 000 cm−1. For the low temperature
measurements we used a continuous flow liquid helium cryostat with an automated temperature
control and sample change system [70] to improve the reproducibility over a manual system.
A polished stainless steel mirror was used as an intermediate reference to correct for the
instrument drift with time and temperature. An in situ evaporated gold (50–14 000 cm−1)
or aluminium (12 000–40 000 cm−1) film on the sample was used as the final reflectance
reference [71]. The reflectance of the gold films was in turn calibrated with a polished stainless
steel sample where we relied on the Drude theory and the dc resistivity as the ultimate reference.
An advantage of this method is that it corrects for geometrical effects of an irregular surface.
The in situ gold evaporation technique gives accurate temperature dependent data with an
accuracy better than ±0.05% at room temperature.

We measured reflectance of four overdoped (Tc = 80, 82, 65, and 60 K), one optimally
doped (Tc = 96 K), and one underdoped (Tc = 69 K) Bi-2212 sample. We estimated the
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Table 1. Doping levels (p), the background dielectric constant (εH), and the plasma frequency (ωp)
of our eight Bi-2212 samples. γ (p) is obtained from the power law in the optical conductivity (see
section 3.2).

Samples Tc (K) Doping level, p εH ωp (cm−1) γ (p)

UD67 67 0.103 4.27 15 050 1.527
UD69 69 0.106 5.51 16 560 1.563
UD82 82 0.125 4.42 16 300 1.454
OPT96 96 0.160 4.77 17 000 1.449
OD82 82 0.195 5.45 18 800 1.378
OD80 80 0.198 5.07 18 310 1.335
OD65 65 0.219 5.58 19 200 1.332
OD60 60 0.224 5.52 18 900 1.333

hole doping levels of the samples using the empirical parabolic equation of Presland et al [72]:
p(Tc) = 0.16∓[1/82.6 (1−Tc/T max

c )]1/2, where T max
c is the maximum Tc of the material. The

determination of T max
c is not an easy problem [67] as it depends on the growth conditions and

dopant levels. In the absence of a better method, we use the generally accepted value of 91 K as
the T max

c for Bi-2212. We should mention here that our optimally doped sample is doped with
a small amount of Y to yield a relatively well ordered system and shows a surprisingly high
Tc = 96 K [67] and we assigned p = 0.16 as its hole doping level. The disadvantage of the
parabolic approximation is that it does not uniquely determine the doping level of the sample
since there are two independent p values for each value of Tc. To avoid the ambiguity in the
determination of the doping levels we used the slope of the infrared reflectance as an additional
test of the doping level [73]. Table 1 shows the estimated doping levels of our eight Bi-2212
samples.

Figure 1 displays the measured ab-plane reflectance of Bi-2212 at eight different doping
levels and at various temperatures. As the hole doping level increases, some interesting
doping dependent features show up; the overall reflectance level increases and the overall
shape becomes more curved. For each doping level, as the temperature decreases the overall
reflectance increases because of the reduced scattering and, more interestingly, a shoulder
appears between 500 and 1000 cm−1 below an onset temperature, which is also doping
dependent. We will analyse the shoulder feature in detail and discuss its doping dependent
properties in section 5. At room temperature the reflectance below 2000 cm−1 is approximately
linear in frequency. This linear variation, the so-called marginal Fermi liquid behaviour [62]
in Bi-2212 at 300 K has been analysed in detail by Hwang et al [73] below 2000 cm−1 over a
wide doping range.

3. Optical conductivity

In this section we provide the optical conductivity derived from the reflectance by using
Kramers–Kronig (KK) transformations [12, 74–76]. To use this method we have to extrapolate
the measured reflectance to zero frequency on the low frequency side of the measured range
and to infinite frequency on the high frequency side. We used the following extrapolations. For
ω → 0, the reflectance was extrapolated by assuming a Hagen–Rubens frequency dependence,
1 − R(ω) ∝ ω1/2 for normal states and 1 − R(ω) ∝ ω4 for the superconducting states. For
ω → ∞, the reflectance has been extended by using literature data [77] and free electron
behaviour (R ∝ ω−4).
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Figure 1. ab-plane reflectance of Bi-2212 at eight different doping levels. The overall reflectance
increases as the hole doping level increases with charge carrier density introduced by doping. Here
and in the following figures we use a shorthand notation to describe doping status of our samples;
for example UD67 stands for the underdoped sample with Tc = 67 K, OD for overdoped and OP
for optimal doping. We note that a dip feature near 3300 cm−1 of the low temperature data of some
of the samples an absorption is a band from ice on the sample. This feature does not affect low
frequency data below the absorption frequency, 3300 cm−1. However it affects the high frequency
data above 3300 cm−1.

To obtain further optical constants from the measured reflectance (R(ω)) and the
corresponding calculated phase (φ(ω)) from KK analysis, we used Fresnel’s equation for
normal incidence as an approximation:

1 − n(ω) − ik(ω)

1 + n(ω) + ik(ω)
= √

R(ω)eiφ(ω) (1)

or

n(ω) = 1 − R(ω)

1 + R(ω) − 2
√

R(ω) cos φ(ω)
(2)

k(ω) = −2
√

R(ω) sin φ(ω)

1 + R(ω) − 2
√

R(ω) cos φ(ω)
(3)

where n(ω) and k(ω) are the index of refraction and the extinction coefficient, respectively.
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Figure 2. The ab-plane optical conductivity of Bi-2212 of eight Bi-2212 samples at various
temperatures above and below Tc.

In principle, we are able to obtain any other optical quantities by using the various
relationships between the optical quantities [74]:

ε1(ω) = n2(ω) − k2(ω) (4)

ε2(ω) = 2n(ω)k(ω) (5)

and

σ(ω) = −i
ω

4π
[(ε1(ω) − εH) + iε2(ω)] (6)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the optical dielectric constant,
respectively, and σ(ω) ≡ σ1(ω) + iσ2(ω) is the complex optical conductivity.

Figure 2 displays the real part of the optical conductivity of Bi-2212. We observe strong
temperature dependence only in the low frequency region, below 3000 cm−1. The spectral
weight or the number of effective charge carriers per Cu atom on CuO2 plane is defined as
follows:

Neff(ωc) = 2mVCu

πe2

∫ ωc

0+
σ1(ω

′) dω′ (7)

where ωc is the cut-off frequency, m is the free electron mass, VCu is the volume per Cu
atom in the sample, e is the charge of an electron, and σ1 is the real part of the optical
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Figure 3. The dc resistivity, ρdc(T ), extracted from low frequency extrapolations of normal state
optical conductivities. The dashed curve through the data points for our most overdoped sample is
a fitted curve, ρdc(T ) = 0.0155 T 1.64. See the text for a detailed description of the extrapolation.

conductivity. The spectral weight is proportional to the area under the σ1(ω) curve. As the hole
doping increases the overall conductivity increases. For each doping level, as the temperature
decreases, the spectral weight at low frequencies increases as a result of the narrowing the
Drude-like absorption band near zero frequency. This shift of spectral weight continues down
to the superconducting transition temperature, Tc. Below or near Tc a strong depression of
spectral weight below 1000 cm−1 sets in and grows with decreasing temperature. This feature
is related to the step-like feature in the optical scattering rate. (For more detailed discussion
see section 5.) The missing area between the normal and the superconducting curves can be
a measure of the superfluid density (for more detailed discussion see section 4). Even in the
superconducting state we have a sizable amount of residual spectral weight near zero frequency,
which is absent in the conventional superconductors [78–81].

In figure 3 we show the temperature dependence of the dc resistivity of our eight Bi-
2212 samples obtained from extrapolations to zero frequency of the normal state optical
conductivities. These optically determined resistivities show the same features and trends as
are seen with four-probe dc measurements. Starting with the optimally doped sample OPT96
we see the familiar linear variation of resistivity with temperature with a zero-temperature
intercept that is very close to the zero of the temperature axis. From the beginning of the study
of the cuprates this behaviour has been taken as evidence of an exotic transport mechanism.
Interaction with a bosonic mode would also be linear with temperature in this range but would
yield an intercept at approximately h̄ω/4 where ω is the frequency of the mode. For phonon
modes involving oxygens this intercept would be at 100 K. Moving to underdoped samples
we do find a higher intercept associated with the temperature dependence below about 150 K.
Above this temperature the temperature dependence is similar to that of the optimally doped
sample with a lower intercept on the temperature axis. The overdoped samples on the other
hand show a more metallic temperature dependence with an upward curvature with the power
law index of 1.64 for our most overdoped sample, smaller than the T 2 expected for a Fermi
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liquid. These observations are consistent all previous systematic measurements of the dc
resistivity [82, 83]. The message from the underdoped samples is that any bosonic spectral
function causing this scattering has a temperature dependent amplitude with rapid changes
occurring in the 150 K temperature range. This is in agreement with our study of another
underdoped system, orthoII YBCO [53].

3.1. εH and σ2

The quantity εH is the contribution to the dielectric constant from all the high frequency
spectral weight but excluding the low frequency free carrier or intraband contribution. It is
often difficult to determine where the dividing line between the free carriers and the interband
absorption lies. Here we explain the method which we use to estimate εH. First of all we
assume that the frequency which divides the free charge carrier band and the charge transfer
interband absorption is known. We call this characteristic frequency the separating frequency,
ωsp. For a given separating frequency we can determine both the plasma frequency, ωp, and
the dielectric constant at high frequency, εH as follows. The ωp can be estimated using the
following equation:

ωp =
√

120

π

∫ ωsp

0
σ1(ω′) dω′ (8)

where all frequencies are in cm−1. The magnitude of εH can be determined from a Kramers–
Kronig transformation of the high frequency part of σ1, above ωsp:

εH ≡ ε1(ω)|ω→0 = 1 + 120

π
P

∫ ∞

ωsp

σ1(ω
′)

ω′2 − ω2
dω′ (9)

where P denotes the Cauchy principal value, frequencies are in cm−1, and σ1 in �−1 cm−1.
In figure 4 we show an example of an application of the method for optimally doped Bi-2212
at T = 102 K with a given ωsp = 21 000 cm−1. Here we estimate ωp = 19 450 cm−1 and
εH = 4.34.

To estimate εH first get the separating frequency ωsp using the method which we introduced
in a previous paper [73] where we extrapolate the absorption coefficient α of the free carrier
absorption to zero frequency. Then we use equation (8) to obtain the plasma frequency ωp and
equation (9) to obtain εH. We show the dependence of ωp and εH on the separating frequency
in figure 5. While there is a large variation in plasma frequency there is only a small variation
in εH for ωsp values between the well separated bands: the free charge carrier band (below
10 000 cm−1) and the charge transfer band (above 30 000 cm−1). Our estimated εH and ωp

for our eight different Bi-2212 samples are shown in table 1. We used data at T = 300 K,
which are the most accurately measured with our experimental technique. One thing we should
mention here is that we do not have accurate high frequency data above 6 eV for all doping
levels. To get σ2 we used εH values in table 1 (see equation (6)). Recently, the accuracy of
the various methods of finding εH has become an important issue because the optical scattering
rate is very sensitive to the value of εH, especially at high frequency (for more discussions see
the following section 3.2 and figure 9 and the related text).

3.2. Optical conductivity: amplitude and phase

The complex optical conductivity can be described by an amplitude and a phase, i.e.

σ(ω) = |σ(ω)|ei�(ω), where |σ(ω)| =
√

σ 2
1 (ω) + σ 2

2 (ω), and �(ω) = tan−1(σ2(ω)/σ1(ω)).
Anderson [84] suggested a simple power law behaviour for the complex optical conductivity in
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Figure 4. Separate contributions to ε1 of free charge carriers and high frequency bands divided by
a separating frequency, ωsp = 21 000 cm−1.

his Luttinger liquid model. Recently van der Marel et al [85] revisited the Anderson’s model,
describing the optical conductivity as σ(ω) = C(−iω)γ−2, where C is a frequency independent
constant. In this description we have |σ(ω)| = Cωγ−2 and �(ω) = π/2(2 − γ ), which is
frequency independent. In figure 6 we plot the amplitude of the optical conductivity for our
eight Bi-2212 samples at various temperatures on a log–log scale. The dashed lines are linear
least squares fits of the amplitude between 500 and 5000 cm−1 in the normal state where the
quantity |σ(ω)| shows negligible temperature dependence. The absolute value of the slope
(γ − 2) of the fitted straight line increases as the doping level increases. From the slope we can
obtain the doping dependence of γ (p) shown in table 1, which decreases monotonically from
1.55 to 1.33 as doping increases (see figure 8).

In figure 7 we show the phase, �(ω), of the optical conductivity for all our samples.
We note that the phase is almost frequency independent over a wide spectral range above
1000 cm−1 at all measured temperatures. The dashed horizontal line is the corresponding
phase of the straight line fit of the amplitude (see figure 6). We observe that the power law
behaviour holds over a wide spectral range, roughly between 500 cm−1 and near 5000 cm−1,
at various temperatures, and over a wide rage of doping. We also note that at low frequencies,
below 500 cm−1, the optical conductivity shows a strong temperature dependence and deviates
markedly from a constant. In figure 8 we plot the doping dependent exponent, γ (p), which
is extracted from the linear fits in figure 6. The exponent decreases monotonically as the
doping increases. The dot–dashed line is a least squares fit of a straight line to the data. The

10



J. Phys.: Condens. Matter 19 (2007) 125208 J Hwang et al

0

10000

20000

30000

0 10000 20000 30000 40000
0

2

4

6

8

10

Bi-2212

ωω ωω
p(

ωω ωω
sp

) 
(c

m
-1
)

T = 102 K

OPT96A

ε H
( ω

sp
)

ωωωω
sp

 (cm-1)

Figure 5. Separating frequency dependence of the plasma frequency (ωp) and of the high frequency
dielectric constant (εH).

lower dashed line is a predicted variation of this quantity with doping from a recent paper by
Anderson [86].

In figure 9 we demonstrate how the value εH affects the amplitude and the phase of the
optical conductivity. Note that εH affects only the imaginary part of the optical conductivity, σ2.
To see the effect we choose the data for optimally doped Bi-2212 at T = 102 K and calculate
the complex optical conductivity for four different values of εH between 2.50 and 6.00. It is
clear from the figure that there is no significant effect below 1000 cm−1 but the effect builds
up rapidly as the frequency increases. In the upper panel we show calculated amplitudes on a
log–log scale. As εH increases, the absolute value of the slope in the amplitude between 500
and 5000 cm−1 decreases. In the lower panel we show corresponding phases. As εH increases,
the slope in the phase changes from negative to positive. We introduced and described a useful
method for estimating εH in section 3.1.

4. FGT sum rule, superfluid density and kinetic energy

There are various techniques used to determine the superfluid density including optics. Optics
has the advantage that it gives the absolute value and in an anisotropic system (such as the high
temperature cuprates), it also provides all the orthogonal components if a well oriented crystal
is used. However, there are problems that make an accurate determination of the absolute
magnitude difficult. The first of these is a need to determine accurately the reflectance in the
low frequency region where the it approaches unity and where measurements on small crystals
are difficult as the wavelength of the radiation used approaches the size of the samples.
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Figure 6. Amplitude of the optical conductivity, |σ(ω)| ≡
√

σ 2
1 (ω) + σ 2

2 (ω). The dashed lines are
least squares fits of the temperature independent region.

Another source of uncertainty is the presence of a residual metallic conductivity in
the superconducting state seen in many samples. This effect can be recognized from a
downturn in reflectance at low frequency by as much as one to two per cent. The resulting
conductivity shows a peak removed from zero frequency, characteristic of a disordered metallic
material [87]. This low frequency suppression of reflectance is directly related to a sizable
low frequency spectral weight in the optical conductivity and might cause some uncertainty
in the estimated superfluid density. Here we try to minimize this uncertainty by estimating
the superfluid density with the same criteria for all our Bi-2212 samples using the same
experimental instrument and technique, the same method of analysis, and the same low
frequency cut-off of reflectance data, 50 cm−1. With eight different data sets for the optical
conductivity of Bi-2212, we obtain doping dependent superfluid density from the highly
underdoped region to the overdoped region.

Figure 10 shows the frequency dependent accumulated spectral weight or the effective
number of charge carriers per Cu atom of eight Bi-2212 samples at various temperatures below
and above Tc. Overall, the spectral weight increases as we add carriers by doping as we expect.
In the normal state, as the doping level increases, the temperature dependent region in the
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Figure 7. Phase of the optical conductivity, �(ω) ≡ tan−1(σ2(ω)/σ1(ω)) [85]. The dashed
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spectral weight extends to higher frequency. As the temperature is lowered, spectral weight is
shifted to low frequency because of the narrowing of the Drude band.

Above 2000 cm−1 the highest spectral weight curves are almost parallel to the curve in the
superconducting state. The difference between the two parallel spectral weight curves gives us
a rough estimate of the number of superfluid charge carriers per Cu atom, the superfluid density.
This difference increases as the doping level increases; the higher the doping level, the higher
the superfluid density (see figure 14). The flat region spectral weight in the superconducting
state is related to the dip below 1000 cm−1 in the optical conductivity. We analyse spectral
weight variations in detail using the optical sum rule [74, 79] with and without including the
temperature dependence in the spectral weight.

4.1. Temperature and doping dependence of the optical spectral weight at the normal state

The temperature dependence of the optical spectral weight has been studied by several
experimental groups [17, 19, 21, 88, 89]. Those groups have found a quadratic temperature
dependence of the spectral weight. There are many theoretical studies on temperature
dependent optical spectral weight [15, 16]. The spectral weight as a function of temperature
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consists of two terms, one going like T and the other like T 2; the T linear term is attributed
to strong correlations among the carriers and the T 2 term is attributed to the thermally excited
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Figure 10. Frequency dependent spectral weight expressed as the number of effective charge
carriers per Cu atom of Bi-2212, as defined in equation (7).

free carrier contribution [88]. The large prefactor of the T 2 term can carry information on
correlations [89]. In figure 11 we show the temperature dependent spectral weight normalized
to the lowest normal temperature (TL), Neff(T )/Neff(TL), for three representative samples of
UD69, OD80, and OD60 for several different cut-off frequencies (see equation (7) and [89]):
500, 1000, 5000, and 10 000 cm−1. The overall trend is that the spectral weight decreases
as temperature increases. The left (right) panels display the normalized spectral weight as a
function of T (T 2). We are able to clearly find a cut-off frequency and the doping dependence
of the spectral weight in the figure. For the four different cut-off frequencies a linear in T law
alone gives better agreement with data than a T 2 term alone. For the lowest cut-off frequency
(500 cm−1) the linear term is more dominant; T linear holds well for the two overdoped samples
and T sublinear holds better for the underdoped sample. For a higher cut-off (5000 cm−1 or
higher) the quadratic term is dominant; T 2 works well for all dopings. Our observation agrees
with that of Bontemps et al [90].

In figure 12 we display the temperature dependent Neff(T ) for our six representative Bi-
2212 samples with a cut-off frequency of 2000 cm−1. Above Tc as the temperature decreases
Neff increases almost linearly and the rate of increase grows as the doping level increases. We
take into account this approximated linear temperature dependence of Neff when we adjust the
superfluid density, Ns,sum (see figure 15), to obtain the kinetic energy change.
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4.2. Superfluid density from the optical conductivity

We describe next the method we use to obtain the superfluid density from the optical
conductivity in the superconducting state [91]. In the superconducting state we have two
separate contributions to the real part of the optical conductivity: a delta function at the origin
from the superconducting condensate and a regular non-superconducting part

σ1(ω) = σ1sδ(0) + σ ′
1(ω) (10)

where σ1s is a contribution from the superfluid charge carriers and σ ′
1(ω) is a regular non-

superconducting part of the optical conductivity. From the optical sum rule, we can describe
the superfluid plasma frequency, ωps, in terms of σ1s; σ1s = ω2

ps/8 = πnse2/(2m), where
ns is the superfluid density and m is the mass of an electron. Note that the dimension of σ1s

is frequency squared. The Kramers–Kronig (KK) transformation of the real part gives us the
imaginary part, which also consists of two terms, as follows:

σ2(ω) ≡ σ2s(ω) + σ ′
2(ω) (11)

= 2σ1s

πω
+ σ ′

2(ω) (12)
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Figure 12. Temperature dependent spectral weight below 2000 cm−1 for six representative Bi-
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to drop rapidly at Tc as the superconducting condensate forms. There is a monotonic increase of
spectral weight with doping.

where σ2s(ω) is the imaginary part of the condensate conductivity and σ ′
2(ω) the imaginary part

of the regular non-superconducting part. The latter makes a KK pair with σ ′
1(ω).

Here we explain how we get the σ2s from the optical conductivity. Using another KK
transformation we can calculate σ ′

2 from σ ′
1, which is simply the regular non-superconducting

optical conductivity in the superconducting state because σ1s is a delta function at zero
frequency, which is excluded in the KK and is not seen at finite frequencies. We have already
extracted the total σ2 from the measured reflectance and a given εH by using KK analysis as
described previously (see section 3). So we can obtain σ2s by subtracting σ ′

2 from σ2 (see
equation (3)). Finally, we can calculate the superfluid plasma frequency, which is closely
related to the superfluid density per copper, Ns, by the following equation:

σ2s(ω) · ω = 2σ1s

π
= ω2

ps

4π
= Nse2

mVCu
(13)

where VCu is the volume per Cu atom, e is the charge of an electron, and m is the mass of a free
electron.

After some unit conversions, we get the following practical formula for the superfluid
density, Ns:

Ns
∼= 6.29 × 10−10VCu · σ2s(ω) · ω (14)

where VCu is in Å
3
, σ2s in �−1 cm−1, and ω in cm−1. For Bi-2212 VCu is 112.6 Å

3
, which does

not change much with doping.
Another independent method that yields the superfluid density from the optical

conductivity is directly related to the ‘missing spectral weight’ in the optical conductivity
when charge carriers are paired and condense to form the superfluid. There is a fundamental
difference between this and the previous method. For this method we need to have two optical
conductivities (one in the normal state and the other in the superconducting state) but only
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one optical conductivity in the superconducting state is needed for the application of the
previous method. We should note that the temperatures of the normal and superconducting
states are not the same. The temperature difference may cause an unwanted error in the
superfluid density extracted using this method because the normal state spectral weight shows
a temperature dependence (see figure 12) [53, 89] which will extend below the superfluid
transition temperature. This method originates in the Ferrel–Glover–Tinkham (FGT) sum
rule [14] which states that all the spectral weight lost at finite frequencies is transferred to the
superconducting condensate delta function at zero frequency. In the formalism we can describe
the superfluid plasma frequency in convenient units as follows:

ω2
ps,sum(ω) = 120

π

∫ ω

0+
[σ1,n(ω

′) − σ1,s(ω
′)] dω′

Ns,sum(ω) ∼= 4.26 × 10−10 · VCu

∫ ω

0
(σ1,n − σ1,s) dω′

(15)

where σ1,n and σ1,s are the real parts of the optical conductivity for normal and superconducting

states, respectively. VCu is in Å
3

and the σ1 s are in �−1 cm−1. All frequencies are in cm−1

including ωps,sum.
In conventional superconductors, where the pairing and the condensation are driven by

potential energy, the FGT sum rule holds exactly. However, as Hirsch has proposed, the
FGT sum rule can be violated in unconventional superconductors including the cuprates [15]
and a modified FGT sum rule can be introduced with an extra kinetic energy terms as
follows [16, 92]:

ω2
ps(ω) = 120

π

∫ ω

0+

σ1(ω

′) dω′ + e2ab

π h̄2c2VCu

EKin(ω)

or


EKin(ω) = h̄2

mab
[Ns − Ns,sum(ω)] (16)

or


EKin(ω) ∼= 0.261 × [Ns − Ns,sum(ω)] (in eV) (17)

where 
σ1(ω
′) = σ1,n(ω

′) − σ1,s(ω
′), a and b are the lattice constants of the ab-plane, c

is the speed of light, and 
EKin(ω) is the kinetic energy change when the system becomes
a superconductor, i.e. 
EKin(ω) ≡ E s

Kin(ω) − En
Kin(ω), where E s

Kin(ω) and En
Kin(ω) are

the kinetic energies of the superconducting and the normal states, respectively. Note that
equation (17) holds only for Bi-2212 systems. In figure 13 we show the superfluid densities
obtained from the two different methods, i.e. using equations (14) and (15). Here we do not
include the temperature dependence of Neff to obtain Ns,sum(ω) yet. In principle, Ns(ω) is
frequency independent and Ns,sum(ω) approaches a saturation value as the frequency increases.
We observe that Ns,sum saturates more quickly as doping increases, which is consistent with the
observation of Homes et al [93] in the YBa2Cu3O6+x (Y123) system, except that our saturation
frequency is lower than what they observed. The number in the parentheses is a percentage
difference between Ns and the saturated Ns,sum, i.e. (Ns − Ns,sum)/Ns × 100. Roughly, we
observe that the superfluid density increases as doping increases. Through the whole spectral
range and at all doping levels the saturated Ns,sum is smaller than Ns and the FGT sum rule is
violated. However, when we take into account the temperature dependence for Ns,sum, Ns,sum

is smaller than Ns in the underdoped region and is larger than Ns in the overdoped region (see
figure 15). In other words the sum rule violation changes sign at this doping level.

In the upper panel of figure 14 we show a Tc versus ρs ≡ ω2
ps graph. We do not observe

the so-called ‘boomerang’ effect [94, 95] where at higher doping levels the superfluid density
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Figure 13. Superfluid densities obtained by two different methods using σ2(ω) (equation (14))
(solid curves) and using the FGT sum rule (equation (15)) (dashed curves). See table 2 for detailed
values of Ns.

Table 2. Superfluid densities of our eight Bi-2212 samples. Ns are the superfluid densities
extracted using equation (14) and Ns,sum are the superfluid densities extracted using the FGT sum
rule, equation (15), integrated up to 2000 cm−1. Ns,diff (%) are the percentage differences between
superfluid densities determined by the two methods (see the text for a more detailed description).

Samples Tc (K) p Ns Ns,sum Ns,diff (%)

UD67 67 0.103 0.0335 0.0270 19.3
UD69 69 0.106 0.0663 0.0596 10.1
UD82 82 0.125 0.0456 0.0394 13.7
OPT96 96 0.160 0.0739 0.0651 11.9
OD82 82 0.195 0.1175 0.1054 10.3
OD80 80 0.198 0.1044 0.0993 4.9
OD65 65 0.219 0.1436 0.1301 9.4
OD60 60 0.224 0.1668 0.1601 4.0

decreases. Also we add two additional data points for 6% Sr-doped LSCO (Tc = 5.5 K) and
a well ordered underdoped orthoII Y123 (Tc = 59 K) [53]. In the lower panel we show the
doping dependent London penetration depth, λL(p) ≡ 1/(2πωps), where ωps is in units of
cm−1. As doping increases the London penetration depth decreases monotonically with values
ranging between 1000 and 3000 Å.

In figure 15 we show the doping dependent kinetic energy change, 
EKin(p), of Bi-
2212 samples with two different cut-off frequencies: 1000 and 2000 cm−1. When calculating

EKin(p) we take into account the temperature dependent spectral weight (see figure 12) of the
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Figure 14. In the upper panel we display Tc versus ρs ≡ ω2
ps. We added two data points from

underdoped LSCO with Tc = 5.5 K and underdoped Y123 in the orthoII phase with Tc = 59 K. In
the lower panel we display the doping dependent London penetration depth, λL(p).

normal state, i.e. we extrapolate the temperature dependent trend to get an appropriate normal
state Neff at the temperature of the superconducting state considered. Even though the data
points do not show a very smooth doping dependence we can clearly observe a crossover from
negative (underdoped) to positive (overdoped) kinetic energy change. There is a disagreement
on the sign of the kinetic energy change between previous two studies: a negative value for the
optimally doped and underdoped Bi-2212 samples was obtained by Molegraaf et al [17] and a
positive value for optimally doped Bi-2212 was obtained by Boris et al [18]. Our result agrees
with Molegraaf et al. The increasing trend of 
EKin observed here is consistent with results of
Deutscher et al [19], Gedik et al and Carbone et al for the same Bi-2212 system. The data of
Deutscher et al are also shown in the figure.

5. The extended Drude model and the optical self-energy

The extended Drude model offers a detailed description of the charge carrier scattering
spectrum and its contribution to the effective mass [34, 96]. In this picture the elastic scattering
rate in the Drude expression is allowed to have a frequency dependence and an extra real
quantity, ωλ(ω), is added to the (imaginary) scattering rate. This is necessary to retain the
Kramers–Kronig relation between σ1(ω) and σ2(ω). In this formalism we can introduce an
interesting and useful quantity, the optical self-energy, �op(ω), which is closely related to the
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Figure 15. Doping dependent kinetic energy change, 
EKin ≡ Es
Kin − En

Kin, of Bi-2212 when
the system becomes a superconductor. We also show data points from Deutscher et al for Bi-2212
systems [19].

quasiparticle self-energy [8, 97]:

σ(ω, T ) = i
ω2

p

4π

1

ω + [ωλ(ω, T ) + i1/τ(ω, T )]
= i

ω2
p

4π

1

ω − 2�op(ω, T )
(18)

where ωp is the plasma frequency, 1/τ(ω, T ) is the optical scattering rate, and λ(ω) + 1 ≡
m∗(ω)/m, m∗(ω) is an effective mass and m is the bare mass. The optical self-energy is a
complex function, �op(ω, T ) ≡ �

op
1 (ω, T ) + i�op

2 (ω, T ), where −2�
op
1 (ω, T ) = ωλ(ω, T )

and −2�
op
2 (ω, T ) = 1/τ(ω, T ). �

op
1 and �

op
2 make a Kramers–Kronig pair. The optical self-

energy contains the plasma frequency, which includes the spectral weight of the free carrier
part of the optical conductivity. We obtained the plasma frequency by using a procedure
introduced in a previous study [73]. The plasma frequencies are displayed in table 1. The
optical self-energy at high frequencies depends strongly on εH (see figure 9 and its caption).
The optical self-energy is, apart from a (cos θ − 1) factor where θ is a scattering angle, an
average over the Fermi surface of the quasiparticle self-energy [7, 8, 98, 99] as measured
using angle resolved photoemission spectroscopy (ARPES). ARPES has a capability of k-space
resolution while optics has the advantage of better overall energy resolution. The self-energies
measured by the two spectroscopy techniques (optical and ARPES) show qualitatively the same
properties [8, 35, 39]. However, on a quantitative level there are some fundamental differences
between them [97].

Figure 16 displays the optical scattering rates of our eight Bi-2212 samples at various
temperatures above and below Tc. At room temperature the overall scattering rate decreases
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Figure 16. The optical scattering rate or the imaginary part of the optical self-energy of ab-plane
Bi-2212 at various doping levels and temperatures. 
1/τ can be a measure of intensity of the step-
like feature, which is correlated with the magnetic resonance mode [8, 35, 53]. The intensity of the
step shows strong temperature and doping dependences. The thick curve in the panel of OPT96 is
1/τ (ω) = 17 · ω2−γ where γ = 1.378 for the optimally doped sample (see the text).

as the doping increases. The scattering rate is fairly linear as a function of frequency up
to nearly 3000 cm−1 and the slope decreases monotonically with the doping. This linear
dependence was described by the phenomenological marginal Fermi liquid theory [62] but
we note here that consistently with the power seen in the conductivity, we see a negative
curvature in our 1/τ spectra. and we also observe a hint of saturation in the scattering above
3000 cm−1, as suggested by van der Marel et al [85]. We add a theoretical scattering curve,
1/τ(ω) = constant · ω2−γ , in the panel of OPT96 which is obtained using the power law in
σ(ω) = C(iω)γ−2. We note here again the γ is doping dependent (see table 1 and figure 8). At
lower temperatures a sharp step-like feature appears in the spectrum. The onset temperature of
this feature is higher than Tc for underdoped samples and ∼=Tc for optimally and overdoped
samples. This feature can be fitted with a formalism [53, 100], on the basis of a method
proposed by Shulga et al [101]. For the fit we need two separate bosonic scattering channels;
one is scattering by a sharp mode and the other by a broad background. Hwang et al showed that
the step-like feature and the sublinear part of the high frequency scattering rate were attributable
to the sharp mode and the broad background in the spectral function α2 F(�), respectively [53].
In the superconducting state we need a formalism that incorporates the superconducting gap
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Figure 17. The doping dependent intensity of the step-like feature in the optical scattering rate.

and coherence factors. Qualitatively a similar picture was derived and applied to the optimally
doped Bi-2212 system by Schachinger et al [98].

We estimate the contribution of the sharp mode to the optical scattering rate by the height
of the step in the scattering rate, which is proportional to the area under the mode in the spectral
function. We measure the height of the step as follows [8]: we draw a dashed line parallel to
the high frequency sublinear trend from an onset point of substantial scattering. The difference
between this line and the actual high frequency scattering, 
1/τ (shown in figure 16), is our
estimate of the contribution of the sharp mode to the optical scattering. A doping dependent
step intensity, 
1/τ(p), is shown in figure 17. In the figure we also show a normalized
scattering rate, (
/τ)/(1/τ@3000 cm−1), divided by the value at 3000 cm−1. The step in
intensity decreases rapidly as the doping level increases and becomes zero near a doping level
of p ∼ 0.24 within the superconducting dome, where the superconductivity is still strong in
terms of Tc ∼ 55 K.

In figure 18 we display the real part of the optical self-energy of Bi-2212. This quantity and
the scattering rate make a KK pair. At room temperature we see only a very broad background
spectrum. The peak frequency of the broad background increases as the doping increases. As
the temperature is lowered a well defined sharp peak appears out of the broad room temperature
background with the same onset temperature as the step-like feature in the scattering rate
and the peak grows as the temperature is reduced further. Johnson et al have also resolved
a sharp peak and a broad background in ARPES quasiparticle self-energy spectra in the (π ,
π ) direction of Bi-2212 systems and correlated the sharp mode with the magnetic resonance
mode of inelastic neutron scattering [42]. More recently similar conclusions have been reached
by Kordyuk et al [47]. The optical self-energy and ARPES quasiparticle self-energy show
strong similarity in terms of their shapes and temperature and doping dependences [8]. Both
self-energies have a sharp mode and a broad background at low temperature below Tc while
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Figure 18. The real part of the optical self-energy of eight Bi-2212 samples at various temperatures.
We are able to resolve a sharp peak and a broad background in the spectra. The sharp peak shows
strong temperature and doping dependences.

optics shows much better energy resolution. The mode frequencies from the two techniques
have an interesting relation: �optical

∼= √
2 �ARPES, where �optical and �ARPES are the optical

and ARPES mode frequencies, respectively. The relation is consistent with a theoretical
prediction [97]. Furthermore Hwang et al have analysed the temperature dependent intensity of
the step-like feature in the optical scattering rate of orthoII Y123 and found a direct correlation
between the step feature in the scattering and the magnetic resonance mode of inelastic neutron
scattering (INS) [53].

In the upper panel of figure 19 we show the sharp peak separated from the broad
background in the real part of the optical self-energy and we fitted it to a Lorentzian function
to obtain the centre frequency, the width, and the height of the peak and the area under it. For
the two most underdoped samples it is a little difficult to separate the peak from the broad
background because the peak evolves gradually from the broad peak of the background. We
display the doping dependent properties of the peak in the lower panel of the figure. The centre
frequency (the width) seems to be maximized (minimized) near the optimally doping level.
Note that the width does not change much through a wide range of doping. The area and height
show a strong doping dependence in the overdoped region; the intensities of both quantities
decrease very rapidly as doping increases and finally become zero simultaneously within the
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Figure 19. In the upper panel we show the sharp mode separated from the high temperature broad
background in the real part of the self-energy and a Lorentzian fit for each doping level. In the lower
panel we show the centre frequency, the height, the width of the sharp mode and the area under the
mode obtained from the Lorentzian fit.

superconducting dome with a hole doping level, p ∼ 0.24, estimated from extrapolations. This
result is consistent with the doping dependent intensity of the step-like feature in the scattering
rate.

For another measure of the strength of the interaction of the charge carriers with the
bosonic sharp mode we use the procedure introduced by Marsiglio et al, Carbotte et al, and
Abanov et al [35, 102, 103] where the bosonic spectral function, W (ω), is derived from the
second derivative of the optical scattering rate times the frequency. This function can be
described as follows [37, 96, 102]:

W (ω) ≡ 1

2π

d2

dω2

[
ω

τ(ω)

]
(19)

and W (ω) ≈ α2 F(ω) at zero temperature in the normal state, where α is a coupling constant,
and F(ω) is a bosonic density of states. To obtain the spectral function (W (ω)) we followed
a smoothing procedure introduced by Tu et al [37]. We fit 1/τ(ω) (see figure 16) with a
polynomial with ten terms to catch the main frequency in the spectra without including too
much experimental random noise.
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Figure 20. In the upper panel we show the bosonic spectral function, W (ω), obtained by using
the second-derivative formalism (see equation (19)) in the superconducting state, T ∼ 27 K. We
observe a sharp mode in the low frequency range. In the lower panel we show the centre frequency,
the height, the width of the sharp mode and the area under the mode in W (ω).

In the upper panel of figure 20 we show the bosonic spectral function obtained using the
second-derivative method, W (ω) for our six representative Bi-2212 samples at their lowest
temperature. In the figure we have subtracted the room temperature background W (ω) from
W (ω) at the lowest temperature. We should note that the bosonic mode is enhanced in the
superconducting state. However, the qualitative doping dependent trend is not affected by the
gap [97]. In the lower panel of the figure we display the doping dependent properties of the
peak: the centre frequency, the width, and the height of the peak, and the area under the peak.
The area is roughly proportional to the quantity 
1/τ and has the same doping dependent trend
as 
1/τ . The extrapolation of the variation with doping of the height and area suggests that
the mode will disappear within the superconducting dome in the Bi-2212 phase diagram. The
polynomial fit method is fairly robust with respect to experimental noise. We compared this
method with alternative methods including an inverse matrix method [104] and found that, for
the orthoII material at least, this method gave a well ordered temperature sequence for both the
peak position and frequency where alternative methods tended to scramble these quantities.

Since the mode disappears above a critical doping level in the phase diagram leaving the
broad background as the only component in the interacting bosonic spectrum it is important
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Figure 21. In the upper panel we show the optical scattering rates (lines) of our eight Bi-2212
samples at room temperature and their fits (symbols) obtained by using the methods introduced in
the literature [53, 100]. In the lower panel we display the MMP bosonic spectral function, α2 F(ω),
from the fits in the upper panel.

to investigate this spectrum. We obtained the bosonic spectral functions of our eight Bi-2212
samples by fitting the room temperature scattering rate with the Millis–Monien–Pines (MMP)
type of background [24] using the methods introduced by Sharapov et al [53, 100]. In the
upper panel of figure 21 we show the fits (symbols) and data (lines) for the optical scattering
rate. In the lower panel of the figure we display the corresponding bosonic spectral functions.
The spectral function shows a slight doping dependence at low frequencies. As we move
closer to the antiferromagnetic phase boundary the spectral function grows in strength and
develops a more defined peak at low frequency. We also obtain the coupling constant, λ, for
this spectrum, which is defined by λ = ∫ ωc

0 α2 F(ω′)/ω′ dω′ with ωc = 3000 cm−1. The
resulting doping dependent coupling constant, λBG(p), is shown in figure 22. There is a strong
doping dependence in the coupling constant, ranging from 2.25 to 1.25. The value decreases
monotonically as doping level increases. This behaviour is not consistent with an observation
of Padilla et al for LSCO systems [105]: they suggested that there is little doping dependence
of the carrier mass which is given by m∗ = m(1 + λ) across the phase diagram.

6. Discussion and conclusions

6.1. The superfluid density and the kinetic energy change

The doping dependence of the superfluid density in the cuprates has been of great interest from
early on when Uemura et al found using muon scattering that the superfluid density increases
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with doping and is proportional to the superconducting transition temperature [106]. This so-
called Uemura relationship holds only up to the optimal doping level, at which point Tc stops
increasing while the superfluid density continues to increase. There have been reports, for
example by Niedermayer et al who studied overdoped Tl-based (Tl2Ba2CuO6+δ: Tl-2201)
cuprates using muon spin resonance, of a so-called boomerang effect where the superfluid
density decreases in the overdoped region as the doping level increases [94]. As we see
in figure 14, our data, obtained by two different methods, show that the superfluid density
continues to increase in the overdoped region and there is no boomerang effect in this material.

For conventional superconductors the Ferrel–Glover–Tinkham (FGT) sum rule holds.
However, the c-axis optical transport in the cuprates shows a strong violation of the FGT
sum rule which has been attributed to a kinetic energy driven superconductivity [107].
Whether the FGT sum rule holds or not in ab optical transport has been the subject of some
controversy [17, 18, 108, 109]. Here we find, as shown in figure 15, that a measurable FGT
sum rule violation can be observed in ab-plane transport of Bi-2212. We do find that we have
to take account the temperature dependence of the spectral weight and extrapolate it into the
superconducting state. This result is consistent with Deutscher et al [19].

6.2. The sharp mode and the broad background in the optical self-energy

We have verified the behaviour of the sharp mode observed by Hwang et al [8] over a wide
range of dopings with more samples, which is shown in figures 17 and 19, and with a different
method of analysis, the second-derivative method, the result of which is shown in figure 20.

We also have studied the broad background in more detail; we extracted doping dependent
bosonic spectra shown in figure 21 from room temperature optical scattering rates. The broad
peak of the background moves to lower frequencies and its intensity increases as the doping
decreases, which is qualitatively consistent with figure 51 of [4]. The coupling constant of the
room temperature background, λBG(p), which is displayed in figure 22, decreases significantly
as doping increases, which agrees with previous studies [42, 73]. Recently, a new study
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has shown that the broad background at room temperature evolves into the sharp mode with
lowering temperature and this temperature evolution shows strong doping dependence [110].

6.3. Summary and conclusion

We obtained the superfluid density with two different methods from our ab-plane optical
conductivity and observed that the superfluid density increased monotonically with the hole
doping level. The smooth and monotonic increase of the superfluid density with the doping
supports the overall consistency of our study. We took into account the temperature dependence
in the optical spectral weight for extracting the superfluid density and observed a violation of
the FGT sum rule, the result of which causes a change of the kinetic energy of the charge
carriers at the superconducting transition. Kinetic energy increases (decreases) in overdoped
(underdoped) systems as the system becomes a superconductor. We also confirmed our
previous work [8] with more samples and a different method of analysis. We resolved a
sharp mode out of a broad background in the optical self-energy. The temperature and doping
dependence of the sharp mode is dramatic; the onset temperature Ts of the sharp mode is above
(at) Tc in underdoped (overdoped) systems and the intensity of the mode gets weakened strongly
in the overdoped region with increasing doping, and an extrapolation of the doping trend shows
a complete disappearance above a critical doping, pc ∼ 0.24, within the superconducting dome.
The broad background is present at all temperatures and doping levels and shows relatively
weak doping and temperature dependence. However the coupling constant of the background
decreases measurably as the doping increases.
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